Application of Statistical Relational Learning to Hybrid Recommendation Systems
نویسندگان
چکیده
Recommendation systems usually involve exploiting the relations among known features and content that describe items (content-based filtering) or the overlap of similar users who interacted with or rated the target item (collaborative filtering). To combine these two filtering approaches, current model-based hybrid recommendation systems typically require extensive feature engineering to construct a user profile. Statistical Relational Learning (SRL) provides a straightforward way to combine the two approaches. However, due to the large scale of the data used in real world recommendation systems, little research exists on applying SRL models to hybrid recommendation systems, and essentially none of that research has been applied on real big-data-scale systems. In this paper, we proposed a way to adapt the state-of-the-art in SRL learning approaches to construct a real hybrid recommendation system. Furthermore, in order to satisfy a common requirement in recommendation systems (i.e. that false positives are more undesirable and therefore penalized more harshly than false negatives), our approach can also allow tuning the tradeoff between the precision and recall of the system in a principled way. Our experimental results demonstrate the efficiency of our proposed approach as well as its improved performance on recommendation precision.
منابع مشابه
Combining content-based and collaborative filtering for job recommendation system: A cost-sensitive Statistical Relational Learning approach
Recommendation systems usually involve exploiting the relations among known features and content that describe items (content-based filtering) or the overlap of similar users who interacted with or rated the target item (collaborative filtering). To combine these two filtering approaches, current model-based hybrid recommendation systems typically require extensive feature engineering to constr...
متن کاملA Unified Recommendation Framework Based on Probabilistic Relational Models
Zan Huang, Daniel D. Zeng, Hsinchun Chen Department of Management Information Systems, The University of Arizona {zhuang, zeng, hchen}@eller.arizona.edu Abstract Recommender systems are being increasingly adopted in various e-commerce applications. A wide range of recommendation approaches have been developed to analyze past consumer-product interactions, consumer attributes, and product attrib...
متن کاملHybrid Adaptive Educational Hypermedia Recommender Accommodating User’s Learning Style and Web Page Features
Personalized recommenders have proved to be of use as a solution to reduce the information overload problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...
متن کاملRelational Databases Query Optimization using Hybrid Evolutionary Algorithm
Optimizing the database queries is one of hard research problems. Exhaustive search techniques like dynamic programming is suitable for queries with a few relations, but by increasing the number of relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, so we have to use random and evolutionary methods. The use of evolutionary methods, beca...
متن کاملUse of Deep Learning in Modern Recommendation System: A Summary of Recent Works
With the exponential increase in the amount of digital information over the internet, online shops, online music, video and image libraries, search engines and recommendation system have become the most convenient ways to find relevant information within a short time. In the recent times, deep learning’s advances have gained significant attention in the field of speech recognition, image proces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1607.01050 شماره
صفحات -
تاریخ انتشار 2016